Login
Login
National Data Archive
An Online Microdata Catalog
  • Home
  • Catalog
  • Citations
    Home / Central Data Catalog / LIAM3851_FREDAPI
central

Python API for FRED (Federal Reserve Economic Data) and ALFRED (Archival FRED)

Liam3851_fredapi
Liam3851
Created on December 02, 2019 Last modified December 02, 2019 Page views 19 Metadata JSON
  • Project Description

Overview

Abstract

# fredapi: Python API for FRED (Federal Reserve Economic Data)

`fredapi` is a Python API for the [FRED](http://research.stlouisfed.org/fred2/) data provided by the
Federal Reserve Bank of St. Louis. `fredapi` provides a wrapper in python to the
[FRED web service](http://api.stlouisfed.org/docs/fred/), and also provides several convenient methods
for parsing and analyzing point-in-time data (i.e. historic data revisions) from [ALFRED](http://research.stlouisfed.org/tips/alfred/)

`fredapi` makes use of `pandas` and returns data to you in a `pandas` `Series` or `DataFrame`

## Installation

```sh
pip install fredapi
```

## Basic Usage

First you need an API key, you can [apply for one](http://api.stlouisfed.org/api_key.html) for free on the FRED website.
Once you have your API key, you can set it in one of three ways:

* set it to the evironment variable FRED_API_KEY
* save it to a file and use the 'api_key_file' parameter
* pass it directly as the 'api_key' parameter

```python
from fredapi import Fred
fred = Fred(api_key='insert api key here')
data = fred.get_series('SP500')
```

## Working with data revisions
Many economic data series contain frequent revisions. `fredapi` provides several convenient methods for handling data revisions and answering the quesion of what-data-was-known-when.

In [ALFRED](http://research.stlouisfed.org/tips/alfred/) there is the concept of a *vintage* date. Basically every *observation* can have three dates associated with it: *date*, *realtime_start* and *realtime_end*.

- date: the date the value is for
- realtime_start: the first date the value is valid
- realitime_end: the last date the value is valid

For instance, there has been three observations (data points) for the GDP of 2014 Q1:

```xml
<observation realtime_start="2014-04-30" realtime_end="2014-05-28" date="2014-01-01" value="17149.6"/>
<observation realtime_start="2014-05-29" realtime_end="2014-06-24" date="2014-01-01" value="17101.3"/>
<observation realtime_start="2014-06-25" realtime_end="2014-07-29" date="2014-01-01" value="17016.0"/>
```

This means the GDP value for Q1 2014 has been released three times. First release was on 4/30/2014 for a value of 17149.6, and then there have been two revisions on 5/29/2014 and 6/25/2014 for revised values of 17101.3 and 17016.0, respectively.

### Get first data release only (i.e. ignore revisions)

```python
data = fred.get_series_first_release('GDP')
data.tail()
```
this outputs:

```sh
date
2013-04-01 16633.4
2013-07-01 16857.6
2013-10-01 17102.5
2014-01-01 17149.6
2014-04-01 17294.7
Name: value, dtype: object
```

### Get latest data
Note that this is the same as simply calling `get_series()`
```python
data = fred.get_series_latest_release('GDP')
data.tail()
```
this outputs:
```
2013-04-01 16619.2
2013-07-01 16872.3
2013-10-01 17078.3
2014-01-01 17044.0
2014-04-01 17294.7
dtype: float64
```
### Get latest data known on a given date

```python
fred.get_series_as_of_date('GDP', '6/1/2014')
```
this outputs:

<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>date</th>
<th>realtime_start</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<th>2237</th>
<td> 2013-10-01 00:00:00</td>
<td> 2014-01-30 00:00:00</td>
<td> 17102.5</td>
</tr>
<tr>
<th>2238</th>
<td> 2013-10-01 00:00:00</td>
<td> 2014-02-28 00:00:00</td>
<td> 17080.7</td>
</tr>
<tr>
<th>2239</th>
<td> 2013-10-01 00:00:00</td>
<td> 2014-03-27 00:00:00</td>
<td> 17089.6</td>
</tr>
<tr>
<th>2241</th>
<td> 2014-01-01 00:00:00</td>
<td> 2014-04-30 00:00:00</td>
<td> 17149.6</td>
</tr>
<tr>
<th>2242</th>
<td> 2014-01-01 00:00:00</td>
<td> 2014-05-29 00:00:00</td>
<td> 17101.3</td>
</tr>
</tbody>
</table>

### Get all data release dates
This returns a `DataFrame` with all the data from ALFRED

```python
df = fred.get_series_all_releases('GDP')
df.tail()
```
this outputs:

<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>date</th>
<th>realtime_start</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<th>2236</th>
<td> 2013-07-01 00:00:00</td>
<td> 2014-07-30 00:00:00</td>
<td> 16872.3</td>
</tr>
<tr>
<th>2237</th>
<td> 2013-10-01 00:00:00</td>
<td> 2014-01-30 00:00:00</td>
<td> 17102.5</td>
</tr>
<tr>
<th>2238</th>
<td> 2013-10-01 00:00:00</td>
<td> 2014-02-28 00:00:00</td>
<td> 17080.7</td>
</tr>
<tr>
<th>2239</th>
<td> 2013-10-01 00:00:00</td>
<td> 2014-03-27 00:00:00</td>
<td> 17089.6</td>
</tr>
<tr>
<th>2240</th>
<td> 2013-10-01 00:00:00</td>
<td> 2014-07-30 00:00:00</td>
<td> 17078.3</td>
</tr>
<tr>
<th>2241</th>
<td> 2014-01-01 00:00:00</td>
<td> 2014-04-30 00:00:00</td>
<td> 17149.6</td>
</tr>
<tr>
<th>2242</th>
<td> 2014-01-01 00:00:00</td>
<td> 2014-05-29 00:00:00</td>
<td> 17101.3</td>
</tr>
<tr>
<th>2243</th>
<td> 2014-01-01 00:00:00</td>
<td> 2014-06-25 00:00:00</td>
<td> 17016</td>
</tr>
<tr>
<th>2244</th>
<td> 2014-01-01 00:00:00</td>
<td> 2014-07-30 00:00:00</td>
<td> 17044</td>
</tr>
<tr>
<th>2245</th>
<td> 2014-04-01 00:00:00</td>
<td> 2014-07-30 00:00:00</td>
<td> 17294.7</td>
</tr>
</tbody>
</table>

### Get all vintage dates
```python
from __future__ import print_function
vintage_dates = fred.get_series_vintage_dates('GDP')
for dt in vintage_dates[-5:]:
print(dt.strftime('%Y-%m-%d'))
```
this outputs:
```
2014-03-27
2014-04-30
2014-05-29
2014-06-25
2014-07-30
```

### Search for data series

You can always search for data series on the FRED website. But sometimes it can be more convenient to search programmatically.
`fredapi` provides a `search()` method that does a fulltext search and returns a `DataFrame` of results.

```python
fred.search('potential gdp').T
```
this outputs:

<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th>series id</th>
<th>GDPPOT</th>
<th>NGDPPOT</th>
</tr>
</thead>
<tbody>
<tr>
<th>frequency</th>
<td>Quarterly</td>
<td>Quarterly</td>
</tr>
<tr>
<th>frequency_short</th>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<th>id</th>
<td>GDPPOT</td>
<td>NGDPPOT</td>
</tr>
<tr>
<th>last_updated</th>
<td>2014-02-04 10:06:03-06:00</td>
<td>2014-02-04 10:06:03-06:00</td>
</tr>
<tr>
<th>notes</th>
<td> Real potential GDP is the CBO&#39;s estimate of the output the economy would produce with a high rate of use of its capital and labor resources. The data is adjusted to remove the effects of inflation.</td>
<td>None</td>
</tr>
<tr>
<th>observation_end</th>
<td>2024-10-01 00:00:00</td>
<td>2024-10-01 00:00:00</td>
</tr>
<tr>
<th>observation_start</th>
<td>1949-01-01 00:00:00</td>
<td>1949-01-01 00:00:00</td>
</tr>
<tr>
<th>popularity</th>
<td>72</td>
<td>61</td>
</tr>
<tr>
<th>realtime_end</th>
<td>2014-08-23 00:00:00</td>
<td>2014-08-23 00:00:00</td>
</tr>
<tr>
<th>realtime_start</th>
<td>2014-08-23 00:00:00</td>
<td>2014-08-23 00:00:00</td>
</tr>
<tr>
<th>seasonal_adjustment</th>
<td>Not Seasonally Adjusted</td>
<td>Not Seasonally Adjusted</td>
</tr>
<tr>
<th>seasonal_adjustment_short</th>
<td>NSA</td>
<td>NSA</td>
</tr>
<tr>
<th>title</th>
<td>Real Potential Gross Domestic Product</td>
<td>Nominal Potential Gross Domestic Product</td>
</tr>
<tr>
<th>units</th>
<td>Billions of Chained 2009 Dollars</td>
<td>Billions of Dollars</td>
</tr>
<tr>
<th>units_short</th>
<td>Bil. of Chn. 2009 &#36;</td>
<td>Bil. of &#36;</td>
</tr>
</tbody>
</table>

## Dependencies
- [pandas](http://pandas.pydata.org/)

## More Examples
- I have a [blog post with more examples](http://mortada.net/python-api-for-fred.html) written in an `IPython` notebook
Authoring entity
Agency Name Role
Liam3851 owner
Language
English

Methods, software and scripts

Software
Name Libraries or packages used
Python
pandas, __future__, urllib, textwrap, xml, io, unittest, setuptools, datetime, mock, os, fredapi, contextlib, sys, urllib2
License
Name
Apache License 2.0

Metadata production

Producers
Name Role
GitHub Bot bot
Date of Production
01 December 2019
National Data Archive

© National Data Archive, All Rights Reserved.